
messytables Documentation
Release 0.3

Friedrich Lindenberg

January 13, 2017

Contents

1 Example 3

2 Core entities 5

3 CSV support 7

4 Excel support 9

5 ZIP file support 11

6 Auto-detecting file format 13

7 Type detection 15

8 Headers detection 17

9 Stream processors 19

10 License 21

i

ii

messytables Documentation, Release 0.3

Tabular data as published on the web is often not well formatted and structured. Messytables tries to detect and fix
errors in the data. Typical examples include:

• Finding the header of a table when there are explanations and text fragments in the first few rows of the table.

• Guessing the type of columns in CSV data.

• Guessing the format of a byte stream.

This library provides data structures and some heuristics to fix these problems and read a wide number of different
tabular abominations.

Contents 1

messytables Documentation, Release 0.3

2 Contents

CHAPTER 1

Example

messytables offers some commands and data structures to read and evaluate data. A typical use might look like this:

from messytables import CSVTableSet, type_guess, \
types_processor, headers_guess, headers_processor, \
offset_processor

fh = open('messy.csv', 'rb')

Load a file object:
table_set = CSVTableSet.from_fileobj(fh)

If you aren't sure what kind of file it is, you can use
AnyTableSet instead.
#table_set = AnyTableSet.from_fileobj(fh)

A table set is a collection of tables:
row_set = table_set.tables[0]

A row set is an iterator over the table, but it can only
be run once. To peek, a sample is provided:
print row_set.sample.next()

guess column types:
types = type_guess(row_set.sample)

and tell the row set to apply these types to
each row when traversing the iterator:
row_set.register_processor(types_processor(types))

guess header names and the offset of the header:
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(headers_processor(headers))

add one to begin with content, not the header:
row_set.register_processor(offset_processor(offset + 1))

now run some operation on the data:
for row in row_set:
do_something(row)

As you can see in the example above, messytables gives you a toolbox of independent methods. There is no ready-
made row_set.guess_types() because there are many ways to perform type guessing that we may implement
in the future. Therefore, heuristic operations are independent of the main data structures.

3

messytables Documentation, Release 0.3

4 Chapter 1. Example

CHAPTER 2

Core entities

Messytables uses a few core entities to avoid the nesting depth involved in generic data types (a dict in a list in a dict).

5

messytables Documentation, Release 0.3

6 Chapter 2. Core entities

CHAPTER 3

CSV support

CSV support uses Python’s dialect sniffer to detect the separator and quoting mechanism used in the input file.

7

messytables Documentation, Release 0.3

8 Chapter 3. CSV support

CHAPTER 4

Excel support

The library supports workbooks in the Microsoft Excel 2003 format.

The newer, XML-based Excel format is also supported but uses a different class.

9

messytables Documentation, Release 0.3

10 Chapter 4. Excel support

CHAPTER 5

ZIP file support

The library supports loading CSV or Excel files from within ZIP files.

11

messytables Documentation, Release 0.3

12 Chapter 5. ZIP file support

CHAPTER 6

Auto-detecting file format

The library supports loading files in a generic way.

13

messytables Documentation, Release 0.3

14 Chapter 6. Auto-detecting file format

CHAPTER 7

Type detection

One aspect missing from some tabular representations (in particular the CSV format) is type information on the
individual cells in the table. We can brute-force guess these types by attempting to convert all members of a given
column into all types and searching for the best match.

The supported types include:

15

messytables Documentation, Release 0.3

16 Chapter 7. Type detection

CHAPTER 8

Headers detection

While the CSV convention is to include column headers as the first row of the data file. Unfortunately, many people
feel the need to put titles, general info etc. in the top of tabular data. Therefore, we need to scan the first few rows of
the data, to guess which one is actually the header.

17

messytables Documentation, Release 0.3

18 Chapter 8. Headers detection

CHAPTER 9

Stream processors

Stream processors are used to apply transformations to the row set upon iteration. In order to apply transformations
to a RowSet you can register a stream processor. A processor is simply a function that takes the RowSet and the
current row (a list of Cell) as arguments and returns a modified version of the row or None to indicate the row should
be dropped.

Most processors are implemented as closures called with some arguments:

19

messytables Documentation, Release 0.3

20 Chapter 9. Stream processors

CHAPTER 10

License

Copyright (c) 2011 The Open Knowledge Foundation Ltd.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

21

	Example
	Core entities
	CSV support
	Excel support
	ZIP file support
	Auto-detecting file format
	Type detection
	Headers detection
	Stream processors
	License

